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ABSTRACT. Method of determination of an”approximate solution of a boundary value
problem for the ordinary differential equation, based on ap expansion by a system of
basis functions, constructed on a multiscale system of basis wavelets and satisfying given
boundary conditions is described.

Introduction. There exist a great number of the methods for solving of boundary
value problems. They are: fictitions domain method, Schvartz alternating method,
domain decomposition method, alternating direction implicit method, the method of
fictitions components, the methods for constructing of the adaptive grids, and ete. 1,2}
Each of these methods gives the representation of the approximate solution by some
functional space basis. The orthogonal wavelet analysis is interesting for the fact, that
its basis elements are well localized not only in space, but also in frequency. Precisely
this special form of double localization, by means of wavelets, transforms a large class
of functions and operators into so-called sparse one or sparse with a high degree of
accuracy, while representating them in terms of wavelets. However, the basis elements
of these representations do not satisfy the boundary conditions. This fact leads to a slow
convergence of an approximate solution to a precise one. The method of constructing
of the approximate solution of a boundary value problem for the ordinary differential
equation, satisfying the high order precision boundary conditions and containing a few
numbers of basis elements is considered in the present paper. The two-dimensional basis
elements can easily be constructed as a direct product of one-dimensional ones.

Notations and definitions of wavelet constructions. The function ¥ determined
on the numerical axes, with nonzero mean value and rather fast decay at infinity is called
wavelet in very general form. The term "wavelet” expresses the gist of the matter, since
the abovementioned properties mean that the function ¢ is a damping oscillation. The
wavelet serieses are very convenient for the approximate calculations since the number of
operations for calculating the expansion coefficients as well as the number of operations
for reconstruction of the function by means of it’s wavelet coefficients, is in proportion
with the units in the sample of function.

The multiscaled expansion is the increasing sequence {V;}°_ of closed subspaces
Vi C Ly(R), j € %, possessing the following prope:rtzes {3 4]:

LV; C Vi,
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2.F(z) e V; & f(22) € Vjy1,
.F(z)eVo & fle+1) eV,

=] +oo
4. +U V; densein Lo(R) and [) V;={0},
J=—0o0 =0

5. There exists such a scaling function ¢(z) € Vo with a nonzero integral, that the
set of functions {¢(z — k) | k € Z} forms the Riesz basis in V.

The subspaces V; we’ll call levels. It is often supposed, that the set {¢(z—Fk)|k € Z}
represents the orthonormal basis. In this case the function ¢(z) is called orthonormal.

Let’s note, that ¢ (%’-) € V_; C V,, thus it may be expanded in basis functions of
the closed subspace Vj

‘P(%) =2th(p($—k), hy = ('fo (‘";‘)a‘P(-z-k))s kel (1)
k

This functional equation is a self-similarity or scaling equation. The function ¢(z) is
called the scaling function.

Let W, denotes a space, complementing V; in Vji, i.e. a space satisfying the
following relation

Vin=V; @ W;.
We note that the space W; is not necessary unique. There may be several waves to
complement V; in Vj4;.
Space W, contains "detailed” information, needed to go from an approximation "at
resolution j” to an approximation "at resolution j+1 ”. Consequently,

oW, = Ls(R).
J

The function 1 is a wavelet, if the collection of functions {¢(z —1) | I € Z} is the
Riesz basis of a subspace Wy. Then a set of functions {%;; |l,7 € Z} will form the
Riesz basis of the space L;(R). The functions %;; are defined the same as ¢;; in
the previous sections. As the wavelet 1 is the element of subspace Vi, there is the
sequence {gr} € l2, such, that

P(z) =2 gep(2z — k), (2)
k

i.e. it is expressed by shifts of function ¢(z) using the formula, similar (1).

Thus, if the scaling function ¢(z) possesses the property, that its shifts ¢(z—1), p(z—
2),... are orthogonal, the coefficients of wavelet expansion (2) can be expressed by the
coefficients of the scaling equation. We can put

g = (~1)*Fis. N 3)

Thus if thé coefficients hi than real, and g are also real. It’s easily seen, that the
functions ¢(z) and $(z) are orthogonal, i.e. their scalar product is equal to zero:

+oco _ +oco
| [ @R =2 ) e =0.
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Besides the function (2} has orthogonal both shifts and all rescaling versions are
orthogonal as well. It can be said, that the coefficients kj; in (1) specify so-called
smoothing filter, and corresponding coeflicients g; in (3) specify high-frequency filter.

Let we have, according to the general theory of the multiscale analysis of wavelets, -
the expansion of space La(R) in a direct sum of subspaces since some fixed level V;

Lz(li)mV,-@{ & W,.}, J=04..., (4)
| i>j )
where V; is the sﬁbspace with orthonormalized basis of scaling functions
{pirlz) =20 (P2 ~k) , ke Z},
and W; is the subspace with orthogonal basis of wavelets
{$in(e) =272 (2o ~k) ke Z,i>j}.

We assume [5], that ¢(z} is forming scaling function with the compact support
[~M,M] and with a zero first moment; ¥{z} is corresponding wavelet with the same
compact support and with two zere moments, i.e..

M M M
/{p(z)dzzl, f:ctp 2)de = /¢(z V., f:mjv( Vde = 0. (5)
-M w A —-M

We suppose that the functions ¢{z) and 9¥(z) belong to the space C,{R). One of
the sets of such functions is constructed by Coifman and have titles Coiflets [6].

When the functions involved are defined only on a compact set (for example on an
interval), then applying of wavelets requires some modification. For a given function on
the unit interval [0, 1], the most obvious approach is to set its equal to zero outside of

a unif interval, ami then use the wavelet theory on the line. It is possxbie also to take

advantage of the wavelet theory, developed for periodic functions.

We sketch a construction of orthogonal wavelets on a unit interval [0, 1], reccntly
- presented by the Ives Meyer [4]. He extracted from sets orthonormalized on the whole
axes basis of wavelets with a compact support three subsets:

1) support intersects the left endpoint 0;

2) support lies in the interior;

3) support intersects the right boundary. _

Then we have to ortogonalize separately on the unit interval the ﬁ:st and thzrd subsets
with the help of well known Gram - Schmidt procedure. :

However using of this technique leads to loose of & major property of the wavelet the-
ory namelly uniformity of representation of basis functions under concrete calculations.

The function f(z) € L3[0,1] can be considered as the function from Ly(R) and |
according to the theory of multiscale analysis be presented as orthogonal &pumon of
wavelets

Fz) = kaso;, @+ T fubals). G=00 (6)

i
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There are only those numbers of k in this expansion for which the supports of corre-
sponding scaling functions and wavelets intersect the interval [0, 1]. We shall mark, that
the wavelets are the effective tool for the definition of singularities, therefore the arii-
ficial discontinuities on endpoints of an interval are similar to msertmg of an essential
error.

Statement of a problem. lLet we need tofind an approﬁmate solution of the equation

) = 58 40 L) =5 )

in domain 0 < 2 <1 under the boundary conditions

du(0)

(x-—-—d—:;"*wu(ﬂ)ﬂo,u(l)"—”o. (8)
We shall search for a sequence u;{z}, ¢ = 0,1,2,... of approximate solutions of a

problem (7), (8) so that the sequence of functions fi1(z) = f(#)L4;(z) had not
projections on the low levels V; with j <1 and ||fi(z}i — 0 at ¢ — 0.

Conditions on the coefficients of the equation (7} we shall formulate in terms of
decreasing velocity of coefficients in expansion (6).

Model p.roblem. A solution of the boundary value problem
d*u(z)

— =f) , 0<z<1 9

under the boundary conditions (8) is of the form of

Ulz) = Zf.w,, z)+22ﬁ rwik(z),

i2F

where

1 o
vik(z) = f Gz, E)pin(8)dE, wip(z) = / Gz, E)pixlf) dE, (10)
' ¢ o : o
the function
G(w £) =

z+ajf—~1 for8<z<£ ‘
{Ef‘f'a;((z—-l; foré <z <1’ (ﬁ)

is the Green function of the boundary value problem for the equation. {9) in the same
domain 0 <2 <1 under the same boundary conditions (8).

It is obvious, that all w;x(z) and vj, g(z) belong to the space Casz [0 1] and satisfy
the boundary conditions (8).

At realization of assumptions (8) the fanctions wik(z) at M <k <2~ M have
the same compact support [(k — M)/2*,(k 4+ M)/2*], laying strongly on interval [0, 1],
as the corresponding wavelet ¥;x(z). At ~M <k <M and 22 - M <k <2'+M
the functions w; (=) are linear functions outside the support of corresponding wavelet
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i k{z) . The functions v;:(x) are linear functions outside the support of corresponding -
scaling functions @; (2} at all permissible k.
We shall denote

¥(s) = [ B(e)dt = [ MGEIE f &b({)&f f £ (€) dt

#(z) = [ ple)dt = [ (€)dt , (e f 6o(€) dt = f fe(@)d. (1)
In these notations at ‘ )
hjw=2"7, h=2""
the functions w;i{z) and v;i(z) are written in a uniform way

i

wi ()= f Gl )i 0 (€) dé =

O

..—_hafz[qf;(z/h k)+£——1¢1( ) ””*"“qf,(z/h ~k}-

N e (R TR T (D

1

visla)= [ Gla.Opn(€) de=

9

...,h’/"-’Em(a,-/h k) -:,1(.4;)...”“*“"

@;(I/h,ﬂk)—-

a:+a

(o/hi =) (afh;~ B+ 2 ()0 k)+ - )Wa,—kﬂ- (19)

More often the functions () and ¥(x) are specified as the tables (see the known pack-
age MatLab). The functions ¥(z), ¥1(z}, ®(z),and $;(z) are derived as accordingly
tabulated onés. The uniform writing (12), (13) is very convenient for calculations of
such form of the function representation o

Boundary value Problem with a right-hand side from W;. We shall choose
7 > 0 and corresponding expansion (4) of the space Lg(R) We shall search an
approximate soltztxon of a probl (7) - (8) as _ '

Ugp(T) = Zv,,k + 3> anwig, | (15)
m)tz,r k . '
where the coefficients a;; and B will be found using the condatzon that the function
J(2) — Lugp(z} has projections only on subspaces W; at i > M.
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We start from searching of an approximate solution in the case, when the right-hand
side of the equation (7) belongs to a subspace of the most general type (see (4}). If
the right-hand side of the equation (7) belongs to a subspace W;, we shall search an
approximate solution of a problem as . o

=Y mwia(e) . o (18)
k . .
In this section we shall omit for brevity the first index of the function w and note

wg(:n) = w; k(%)

If the support of the function ¥; () is inside the domain then the function wi(z),its
first wy,(z) and second wy,.{2) derivations vanish at the boundary of support, i.e.

wi((k — M)/27) = wi((k + M)/2) = wi ((k ~ M)/27) =

= wiy((k + M)/27) = why, ((k — 1)/2) = win ((k +1)/27) = 0

Besides, as it is easily seen at realization of the condition (5) the derivative wk;(z) is
the antiderivative function of v :{z} and accordingly has the form

wi(z) = [ Bin(€)dE, (k— M)[2 <z < (k+M)/2.

(kM) /23

The system of the functions wi(z) is almost orthogonal and similar to the system
¥;x{2) in the sense that the scalar product (ww(z),¥;jr{z}) is nonzero only when
the remainer of the indexes k and m modulo 27 is less than reduced support length
Piu{z) (ie. | k—m |<2M « 27). The expanding on functions wi(z) is similar to the
representation of the form (6), when the expansion includes both scaling functions and
wavelets themselves. Since the used system of wavelets according to the assumption
{5), has two zero first moment, the system ;;(2), as well as the main part of the
operator L in (7}, "distinguishes badly” the linear functions. Thus, using of almost -
linear functions wi(e) with k < M and k> 2/M , with the supports fitting to all the
domain 0 < z < 1 allows to improve essentially the finite-dimensional appmmmataon
of a solution (15), and, hence to choose the less 27.

Substituting of (16) in (7), multiplicating by ¥;,m(z), ~M+1 <m<¥+M~1
and integrating over our domain {from 0 to 1) lead us to the system of linear equations
with respect to the unknowns coefficients 5 . The matrix of this system has 2x2M -1
nonzero diagonals. It’s diagonal prevalence is easily seen. Really, at M <k <2/ - M
the result of action of the operator L from (7) on the function wi(z) -

x E

Lun(e)=diale48(a) [ #ia(@derele) [ (o= Orpin(ode

(k—M) /28 (kM) /28
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is nonzero only on at the support of corresponding %; x(z) and the scalar product with
¥;m(z) vanishs due to nonintersecting supports. At —M < k < M and 2/ — M <
k < 2/ + M outside the support of the function %;,(z), the function wi(z) and its
derivative are the linear functions. Thus, it is easily seen, that this matrix has the first
and the last nonzero 2M columns.

For the sake of simplicity we restrict ourselves to the case M =1.

The support of function %;(z) will belong to the segment [(k—1)h,(k+1)h]. Thus,
to calculate the coefficients <4, we obtain the following system of the linear equations:

L.,y=F,

where the matrix L,, has the form

( bp a 0 0 0 0 S0 \
1 by a1 O 0 0 s1
T2 ¢ by as 0 0 S2
Lig = :
rn—2 0 0 0 bn-2 an-—2 SN-2
rN—1 0 0 0 ... en-1 bn-1 an—
\ TN 0 0 0 0 CN by

Denote !
li(z) = b(z)wi (z) + c(z)wi(x)

The elements of a matrix L,, has the following form :

h
By = [ (| $50(2) I +Ho(2)j0(2)] dz,

(i4+1)k
b; =1+ f i(z)¥;,i(z)dz, i=1,... ,N-1;

(i-1)k

e f I $in(2) [ +in(2)¢;n(2)] dz,
(NZ1)h

F— / ll(z)qb,,o(z)dz ay— / Li(z);s (z]dz ST e N2

(i=1)k

1

avi= [ In@)in-s(zlds,

(N=1)h
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2h ih
(5] =‘/‘lo(3:)1,b_f,1 (:B)d:t:, C;= ] l.'..](:c)d)j‘;(a;)da:, .i=2, o ,N;
0 (i—-1)h
(i+1)h
ro=r1 =0, r;= f lo(z);,i(z)dz, 1=2,... ,N—-1;
(i=1)h

TN = / Io(z:)qu,N(z)dz 3
(N-1)h

h
so = [ In(z)¢j1(z)de,
/

(i+1)h
iy = /IN(::)'tf)_,;i(z)da:, i=1,... ,N=2; sn_1=sn=0.
(i-1)h
It is obvious, that all integrals in these expressions for the coefficients have the order of
h , if the coefficients of the equation (7) are bounded.

The solution of obtained systems can be found by circular sweep - type method [15].
Let A, is the 3 - diagonal matrix

(bo a 0 O 0 0 0 \
Cy b]_ a 0 e 0 0 0
0 c2 b a 0 0 0
A, = : ..
0 0 0 O bv-2 an-2 0
0 0 0 0 «ee CN-1 bN_]_ anN—1
\ 0 0 0 0O 0 CN bn )

As a result of multiplying by the inversed to A, matrix we obtain the system of equa-
tions with nonzero only principal diagonal elements and the first and the last columns:

AZ'L,y=G=AJ'F.

Here

l14ap 0 ...  fo
«a 1
Aeim] L W
anN 0 1+ 8N

The vectors G, @ and f are easily found by usual sweep method [2].
It is easily seen, that from the obtained system one can extract the following subsys-
tem:

(14 ao)yo + Boyn = Go
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anvo + {1 +bn)yw = Gn.
The determinant of this subsystem is equal to

A«“w3-+ao.+ﬁzv*+; (c0BN — Boan) ,

We obtain: _ |
70 = [(1+B8x5)Go ~ foGnI/A, v =[-acGo + (1 +an)Gn]/A

Y= Gi—ainm—Biyw,i=1,... , N—1.

Boundary value problem with a right-hand side from V;. If the right-hand
side of function f(z) belongs to a subspace V;, then whule searching an approximate
solution as a linear combination of functions v;; (see (10)) the matrix L, , unlike the
matrix L, , turns out to be solid. Inside of zero elements in the matrix L,, we have:

Lo, = (&;+acz+c1)(khm1)/(a+_1) forl+ M<k<2 - M
TN k-t ) kbt a)/lat+1) for M<k<i-M

Here
1 1

'=jb (z)pi{z)dz , wa (w)soa(w)dz,cs =/“ Jpi(z)de

0

are the coeflicients of expansion of functions b(z),c(z) and zc{z) in the basis of the
scaling functions of the subspace V;.

Due to linearity of the lines of the matrix L, over k , it can be transformed to the
form of L., after a trivial procedure.

The solution u;(z) from (16) is constructed so that Lu; j{z) resulting from application
of the operator L from (7} to u; will be orthogonal to the subspace W;. It is easily
seen that the projection of function Luj(z) on a subspace V; will be the order of A
(but nonzero). Therefore the right-hand side f;(z) = f(z) — Lu;(z) has almost the
same projection on a subspace V; , as the function f(z) . An approximate solution
with a new right-hand side can easily be obtained with the help of inversions of matrix
L, . It is obvious that the new right-hand side f3(z), has a projection on the subspace -
W; of the order not above h and easily can be reexpanded due to the general theory
 of the multiscale analysis of wavelets with the help of relations (1) in the basis of the
subspace Vji1 . Thus, we have passed from a problem with a right-hand side having
projection on the subspace V; to a new problem having projections on subspaces only
of more high level and differ from initial function by values of order k. The change-over
from one level to a more high level of a right-hand side can be extended. Thus, the
contribution of the first amendment is decreased proportionally h* /2 ¥¥~1)/2  where
k is the number of transitions. This éstimate designates a velocity of &ecrease of
coefficients in expansion (17) in comparison with a velocity of decrease of expansion
coeficients in basis of wavelets of a right-hand side of the equation.

By choosing j > 0 and corresponding expansion {6}, we can search for an approx- -
imate solution begmm.ng with nght~ha.nd parts being a projection of function f(z)
either on V; or on W
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